December 1987 UILU-ENG-87-2270

CSG-74 |
g o AT
COORDINATED SCIENCE LABORATORY /w7 ™%
College of Engineering N C /-
/17978

g7

ERROR
PROPAGATION
IN A DIGITAL
AVIONIC

MINI PROCESSOR

Dale L. Lomelino

N88-13872
~{NASA-CR-181565) ERROR PROPAGATION IN A i
é&GITAL AVIONIC MINI pROCEs§g§ gmis 32651
{Illinois Univ.) 47 p Avalil: B L 098 tnclas
a3/uE K0T G3s61 0111918

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Reiease. Distribution Unlimited.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS
None '

2a3. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/ AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
UILU-ENG-87-2270 (CSG 74)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(if applicable)

N/A

7a. NAME OF MONITORING ORGANIZATION

NASA

6¢c. ADDRESS (City, State, and ZIP Code)

1101 W. Springfield Avenue
Urbana, IL 61801

7b. ADORESS (City, State, and ZIP Code)

NASA Langley Research Center
Hampton, VA 23665

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION
NASA

8b. OFFICE SYMBOL
(f applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
NASA NAG 1-602

8c. ADDRESS (City, State, and ZIP Code)

See block 7b.

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT
ELEMENT NO. NO.

TASK
NQ.

WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Classification)

Error Propagation in a Digital Avionic Mini Processor

12. PERSONAL AUTHOR(S) Lomelino, Dale L
s .

13a. TYPE OF REPORT 13b. TIME COVERED

FROM

14. DATE OF REPQRT (Year, Month, Day)

15. PAGE COUNT

Technical TO September 1986 45

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number}
FIELD GROUP SUB-GROUP

Simulation, fault-injection, error propagation,
distributions, pin-level fault models

This paper introduces and demonstrates a methodology for the study of error propagatiqn from the gate to
the chip level. The importance of understanding error propagation derives from its close tie with system activity.
In this study the target system is BDX-930, a digital avionic miniprocessor. The simulator used was dcvglopf:d at !
NASA-Langley, and is a gate level, event-driven, unit delay, software logic simulator. An approach is highly
structured and easily adapted to other systems. The analysis shows the nature and extent of_ tl.1e dependency of
error propagation upon microinstruction type, assembly level instruction, and fault-free gate activity.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT

EIUNCLASSIFIEDUNUMITED [SAME AS RPT. Jomic USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified H

22a. NAME OF RESPONSIBLE INDIVIDUAL

22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

ERROR PROPAGATION
IN A DIGITAL AVIONIC MINI PROCESSOR

BY
DALE L. LOMELINO

B.S.. University of Illinois, 1984

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering
' in the Graduate College of the
University of Illinois at Urbana-Champaign, 1986

Urbana, Illinois

iii

ABSTRACT

This paper introduces and demonstrates & methodology for the study of error propagation
from the gate to the chip level. The importance of understanding error propagation derives from
its close tie with system activity. In this study the target system is a BDX-930, a digital avionic
miniprocessor. The simulator used was developed at NASA-Langley, and is a gate level, event-
driven, unit delay, software logic simulator. An approach to gather and model error propagation
information is described. The approach is highly structured and easily adapted to other systems.
The analysis shows the nature and extent of the dependency of error propagation upon microin-

struction type, assembly level instruction, and fault-free gate activity.

DEDICATION

[would like to dedicate this work to my parents, Earl and Collene Lomelino.

iv

ACKNOWLEDGEMENT

I wish to thank Ravi Iyer whose initial conception for this work gave me a topic that I could

enjoy. His support through the creative process of this work will always be appreciated.

I also wish to thank the people at NASA-Langley for their patient help as I familiarized
myself with the operation of their simulator and the system it runs on. I especially wish to

thank Brian Lupton. Dan Palumbo, Bernice Becher, and Rudy Williams.

Thanks also go to Paula Pachciarz for her "speed proofreading” and other assistance in final-
izing this thesis.

Finally I thank all my friends and relatives for their moral support. They helped me keep

my sanity and a sense of humor throughout my scholastic career.

This work was supported by the National Aeronautics and Space Administration under con-

tract number NASA NAG 1-602

TABLE OF CONTENTS

Chapter

1. INTRODUCTIONccoviiiiriccnneisersneecrecssisssersensanes

1.1. Related Research

...

2. THE EXPERIMENT ...

......................................

2.1. Synopsis

............................

2.2. Simulation ...cceeeeeeeenennieeenee

...

2.3. Fault Injectioncccecceceerecvunemsuncancacerconsmcssenases

...

2.4. Error Detection

..

3. MEASUREMENTSooieiiiiienniicnesneienennenne

...............................

4. PRELIMINARY ANALYSIS ...t

4.1. Error Propagation versus Clock Cycle

.....................................

...

4.2. Error Propagation versus Time Step
5. QUANTIFICATION OF ERROR PROPAGATION ..

6. ANALYSIS: EFFECT OF FAULT PLACEMENT ..

....................................

..

..

..

7. ANALYSIS: BY INSTRUCTION/MICROINSTRUCTION ...cueieiieiiiecerencnieneesaercesesaenns

7.1. Instruction-based Analysiscccccevrivurruensenns

7.2. Microinstruction-based Analysiscccceeueene

8. ERROR PROPAGATION AT THE OUTPUT PINS

..........................

..

9. CONCLUSIONS

...........................

APPENDIX A: USE OF THE SIMULATOR

............................

..

APPENDIX B: OUTPUT PIN ERROR DISTRIBUTION

...

vi

Page

10
10
12
14
17
21
21
23
28
31
32
33

37

ALU

CMOS

FBW
FTMP

Vo

SAS
SIFT
VAX

VLSI

LIST OF ABBREVIATIONS

Advanced Fighter Technology Integration
Arithmetic Logic Unit

Complementary Metal-Ozide Semiconductor
Central Processing Unit

Fly By Wire

Fault-Tolerant Multiprocessor
Input/Output

Random Access Memory

Statistical Analysis System

Software Implemented Fault Tolerance
Virtual Address Extension

Very Large Scale Integration

vii

1. INTRODUCTION

The problem of testing and validating real-time digital flight control systems remains quite
intractable at this stage. A major reason is that neither the error generation process nor the fauit
propagation problem is well understood. The mechanisms involved are highly complex and hence
not easily amenable to analytical modeling. An experimental study can provide valuable insight

and help develop a structured basis for analytical modeling.

This paper describes an experimental analysis to study error propagation from the gate to
the chip level. The target system is the Bendix BDX-930, a digital avionic miniprocessor. The’
processor is simulated using an event-driven, gate-level logic simulator developed at NASA-
Langley. The BDX-930 is used in a number of flight control avionic systems, notably SIFT
[Wensley78] and AFTI F-16 [McGoﬁghSl]. Fault tolerance is achieved by replication of the pro-

cessing and voting in software. In this study. only the CPU of the BDX-930 is used.

The general objective of this study was to develop a systematic experimental methodology
to quantify error propagation from the gate to the pin level. Particularly. we wished to do the

following:
(1) Differentiate between faults in various functional units.

(2) Determine the relationship between error propagation and instruction and microcode execu-

tion.
(3) Compare error propagation at the internal gates to that at the output pins.
(4) Determine the validity of a single fault model at the output pins.

An approach to gather and model error propagation information is described. The approach
can, in principle, be adapted to other systems. Error activity data for the study were collected by
comparing the non-faulted (master) simulation run to each individual faulty simulation run.

Data were gathered for faults distributed throughout one of the bit slice processors. A family of

distributions to characterize the error propagation, both within the chip and at the pins, was then
generated. Based on these distributions, measures of error propagation and severity were defined.
The analysis quantifies the dependency of the measured error propagation on the location of the
fault. We also show the nature and extent of the dependency of error propagation upon the type
of microinstruction executed, the assembly level instruction executed, and the fault-free gate

activity.

Sections 2 and 3 contain a detailed description of the experimental procedure and measure-
ments. Sections 4 and 5 describe the measures by which error propagation is characterized. Sec-
tion 6 quantifies the effect of the physical location into which the fault is injected (i.e. the logic
unit), on error propagation. Section 7 describes the analysis of error propagation according to
which instruction and microinstruction are executed. Section 8 compares the error activity at the
output pins to that for all the gates within the chip. The final section summarizes the important

results and draws conclusions.

1.1. Related Research

A series of experiments aimed at error analysis through fault insertion have been conducted
by several investigators at the NASA AIRLAB test bed facility. A summary of these experiments
is given in [Shin84a.b]. {McGough81,83a.b.c] and [Lala81.83b] study the evaluation and modeling
of fault latency in digital avionics systems. These studies were aimed at determining the degree
of fault latency in a redundant flight control system. In [Shin84a,b] a new experiment to study
fault latency distributions through hardware fault injections is described. Experience gathered
from these studies shows that the data generated can provide considerable insight into error
manifestation. Another interesting study is [Courtois79] which describes a simulation experiment

to determine the efficiency of a number of error-detection mechanisms.

An important question not addressed in the above experiments is how to quantify error pro-
pagation from the gate to the pins. Apart from furthering the knowledge of error propagation in
the CPU, this information is crucial for developing effective pin-level fault models for use in the
validation and testing of flight critical digital systems. Currently, single pin-level fault injection

is used in FTMP. In addition, this information may aid in developing CPU test strategies as well.

2. THE EXPERIMENT

2.1. Synopsis

The target system chosen for studying error propagation is the BDX-930 digital avionic
miniprocessor. Within this system, a single chip was selected for fault injection and error propa-
gation data collection (AMD 2901 bit slice processor [AMDS81]). As it is physically impossible to
inject faults into the actual gates within the chip, simulation was chosen as the avenue for data
collection. An event-driven, gate level, unit delay logic simulator developed at NASA-Langley
was employed [Migneault85]. A permanent single stuck-at fault model was employed for the
purpose of fault injection, though the methodology is expected to be applicable to other fault
models. Faults were injected into each of the logic units of the AMD 2901 i.e., the RAM shift, the
Q shift, the mv;xlt.iplexer (MUX), the arithmetic logic unit (ALU), the carry-propagate unit, the
output data select unit, the destination control, the ALU control, and the source control. Such
fault injection not only permitted the study of error propagation in a general sense., but also

helped to determine the effect of fault placement on error propagation.

Error activity data were collected by first simulating a fault-free circuit, next simulating
the circuit again with a single injected fault, and finally by comparing the simulation output for
differences. These measured differences permit error propagation to be quantified. The simulation

was conducted for 50 clock cycles. This period of time was found to be satisfactory for deter-
mining stable distributions and values for the measured quantities.}
The following subsections describe in detail the circuit, the simulator, the fault model. fault

placement, and data collection. A detailed description of the circuit and error detection is given in

Appendix A.

1A detailed sensitivity analysis in the range 5 1o 2000 clock cycles was conducted to ensure that the results were not
strongly influenced by the choice of this time.

2.2. Simulation

The devices® available in the simulator for circuit descriptions include simple gates (i.e..
AND, NAND, OR, NOR, XOR, XNOR, and NOT). tristate devices. and flip flops. Each device is
allowed a unit delay. This is a reasonable assumption for the simple gate and tristate devices,
though flip flops would normally have longer delays (maybe up to an order of magnitude longer).
This inaccuracy proved relatively unimportant since (as described in Sec. 2.3) no flip flops were
selected for fault injection, and error propagation through the RAM (e.g., due to a fault in the
RAM shift), was found to be minimal in the measured period. Such propagation would be impor-
tant in studying the behavior of latent errors. Specific experiments toward this end are reported

in [McGough81,83b] and [Lala83].

Since the simulator is event-driven, the output is a list of devices that changed state (and
their new output values) rather than the complete list of devices and their values for the time
slice within the clock cycle under examination. This type of simulation minimizes both computa-
tion time and the volume of output data. Each event in this list contains a device name, the time
slice in which it changed state, and the new logic value it now has. These events, corresponding to
a change of state, will be referred to as device firings. An erroneous change of state, therefore, is

referred to as a device misfiring.

The single stuck-at fault model was employed in this experiment. This model is well
studied and has so far proven to be an acceptable representation of real physical faults, especially
for systems like the BDX-930 which use no CMOS or VLSI technology. Furthermore, this is the
only fault model that this version of the simulator is capable of, though later versions are capable
of simulating other fault models. More detailed experiments with other. more complex fault

injection schemes are planned for subsequent investigations.

INote that the term 'device’ here means gates, flip flops and the like and not a transistor.

2.3. Fault Injection

Next the problem of where to place a fault for an individual simulation run was addressed.
In general, one would use a random selection process to inject the fault, but due to the number of
simulated fault runs collected and the relatively small number of devices available for fault

selection, faults were injected through most of these available devices.

An explanation is required here. There are 466 devices used to describe the AMD 2901 chip
for simulation. More than half of these devices are used to describe the RAM. Since fault latency
becomes a concern when measuring error propagation through a memory subsystem, experiments
were conducted to determine whether or not error propagation would be measurable in the time
frame of the desired sample length. These experiments showed that errors were not propagated
through the RAM or Q register. Therefore, it was decided to leave these logic units fault-free.

Doing this reduced the number of devices available for fault injection to less than 200.

Due to difficulties in simulating the connection of tri-state device outputs, it was necessary
to insert some bus gates that do not correspond to any real gates in the AMD 2901 circuit. In
order to avoid selecting any of these pseudo gates. the list of gates for fault injection was taken
directly from Bendix's circuit diagram. Using this method, a list of 150 gates was compiled for
fault injection. Since 150 is a manageable number, faulty simulation runs were done for all 150

gates.

2.4. Error Detection

Error propagation is detected by comparing a non-faulted simulation with a faulty run.
Results of the comparison are placed in a difference file. Details of the error detection are given in

Appendix A.2. Briefly, three possible types of error propagation are detected through simulation:

(1) There is a gate firing in the master (non-faulted) simulation run but not in the faulty run,

(2) There is a gate firing in the faulty run that did not fire in the master run. and

(3) There is a gate firing in both runs for the same time slice but the gate takes on different logic

values.

One should note that in some cases the difference file will be empty. The empty file
corresponds to the fault remaining undetected, or to the fault being a latent fault, at least for the
time period simulated. For the initial run of 150 individual faults, 78.7% produced error propa-
gation detected within the chip, and 66.7% produced errors that propagated to the output pins.
The simulated period corresponds to approximately 1% of the test program. For the whole self-
test program, the McGough study found a 92.0% gate-level coverage and 97.6% component-level
coverage [McGough83b]. Clearly, faults tend to produce errors quickly once inserted into an

active system.

3. MEASUREMENTS

A total of 150 simulation runs (one for each faulted gate) were performed for the purpose
of studying error propagation. Each simulation (duration 50 clock cycles) contained a single
stuck-at fault somewhere within the circuit. Altogether, 4 sets of simulation experiments were
conducted, consisting of 150 simulations per set. Each set of 150 simulations is referred to as a
sample (i.e., the overall experiment consists of 4 samples). The input to the simulator was a sys-

tem self-test program developed at Bendix and modified at NASA-Langley.

Each of the four samples uses a different starting point within the self-test program. The
dependency upon program locality was minimized by varying the program starting points for
simulation. The four starting points correspond to four individual subtests within the self-test

program. These subtests include:

the cyclic RAM test,

the CPU test,

the ALU test, and

the memory address processor test.

Starting points were chosen at the beginning of these subtests in order to maintain a close tie with
reality. If the program was entered at some random point, the integrity of the resulting data
would be questionable. Since there was not a significant difference between the samples, only the

results of the CPU test are presented.

In order to determine the effect of the location of the fault upon error propagation, these 150
faults were distributed among nine of the logic units of the AMD 2901. The logic units faulted
include the RAM shift, the Q shift, the multiplexer (MUX), the arithmetic-logic unit (ALU), the
carry-propagate unit, the output data select logic, the destination control logic, the ALU control
logic. and the source control logic. The number of faults injected into each logic unit varied

between 4 (for the source control logic) and 46 (for the ALU).

Information concerning the instruction and microcode activity was collected concurrently
with the error activity data. These data included the number of gates firing in the non-faulted
case (referred to as non-faulted gate activity), the time slice in which the activity occurred, and
the microaddress accessed. Knowing which microaddress was accessed uniquely helps one to
identify the executed microinstruction, which in turn allows one to determine the type of
microinstruction executed. Finally, by examining the sequence of microinstructions, one can

determine which macro (or assembly) level instruction was executed.

In summary, the information on error activity is merged with the instruction/micro-
instruction activity information described above, for each of the samples collected. Each data

record used to characterize error propagation contains the following information:

the clock cycle (between 1 - 50),

the time slice (between 1 - 3500, there are 70 time slices/clock cycle)
the number of gates firing in the non-faulted case for each time slice,
the number of misfiring gates for each time slice,

the microaddress accessed,

the type of microinstruction executed, and

the assembly level instruction executed.

Note that these data are collected for each fault injected into the system. All 150 simulations
may be treated as a group to obtain the error propagation measurements for an average fault, or
split into subgroups for analysis by logic unit or the instruction/microinstruction executed. The

analysis of the collected data is discussed in the subsequent sections.

10

4. PRELIMINARY ANALYSIS

Preliminary analyses were performed upon the error propagation data collected to determine
the pattern of error propagation versus time. Once a general understanding of the error propaga-

tion patterns was achieved, a method of quantification was developed.

4.1. Error Propagation Versus Clock Cycle

A first level analysis of error propagation may be done by plotting the error activity versus
time (measured in clock cycles). Figure 1a shows a plot for the non-faulted gate activity for
comparison with the error activity plot presented in Figure 1b. One should immediately notice
the similarity in shape between these two plots. Note the consistent matching of non-faulted gate
activity peaks with error activity peaks, and of non-faulted gate activity valleys with error
activity valleys. Close correlation between non-faulted gate activity and error activity is indi-
cated. Also shown in these figures are the instruction and type of microinstruction being executed
for each clock cycle. The instruction is labeled across the horizontal axis, as is the clock cycle.
The type of microinstruction may be read from within the bar-graphs themselves. Each letter
that makes up the bars represents one type of microinstruction. The table relating the letters to
the corresponding microinstruction type may be found below the graph. Note that sometimes
there are two letters found in the same clock cycle. They are due to a slight misalignment of the
clock cycle information and the microcode information due to the statistical analysis package

[SAS82].

As for the cause of the oscillatory behavior of the non-faulted gate activity, it can be
explained by examining the microinstructions that are executed within the specified instruction.
In general, the peak gate activity occurs during an instruction prefetch or some other memory
access. The reason appears to be the concurrent activity in the processor. It is quite reasonable

that parallel processes like concurrent memory access and register transfer should cause more gate

11

SYMBOL UTYPE

SymaoL utyet

symsoL utyrl YmMeoL UTYPAL

SYMBOL UTYPE

I T e R T T T S R I 4 o . e T e T et no
s e e e e e ———— - e - v ewg .o
MR ATIIAAAINIIRNINANSN G av L W .
T e . - e e e il N N SN I ¢ '
T B DT P T B T Tio e T Hie e The T B NE N SR K ve .
. LN R | -r
L N S L L N 4 "~ W+ QL w0
. '
WWWwWe ' QLE®I0L VO VMWWwO s GLe®INL WO
. .
[-R+2-X> NN SR XN bW N v “wwDOQOO*+*r@LUYUN IO .
. .
f'rfDODD"DrQlVBr . “hLweaQQOO0O0OADOON00O0 QLOSINL w«w
00QO000O00AG0000O: AL enIDL N v Wm 00000000000 0NANOBO000: ALoeI0L ¥
COODONOOO0OO0DDALESIDL N 4 W o 0O000DVLOOVOOO:: BLOB®IDL W
. - .
WWO00000O000000OQO s 8L endpe . - D e- WWOO00DOOOOOO** GLo® Do . -
» .
WWWWWe * QLS IDL wO J WWwwiw L 0@ 3I8L wO
. o [PRUREE X 1
VLUULVLLULU s =-T L ne m .
. w s VLUV LUU T ~DE ne
[RV RV TRV RTRIRTRTRIRTRTR I - I 4 ne > .
. " WWMWLWMNUOUOUOO =D& no
VNNV IVIRWNNWWW LW W DWW - D Lol .
N P L L LA L RN N 1 ne
TIAIAIIRNIINIINIIINOIIIIN 20§ ne M ¢ e
. P e g -t - o
DI AIIAINIIINANINIAIIIIN =B on i
. W =0 D I et + ~9E an
MAIRNANINIAINNIINIAINI -0 ¢ fe & 0O .
. » QO - - - e e ¢ =G ne
AR MR ELLLLLERELELERERES N Lo A Bl M
. 2 - R -0 e=Dg nn
mw TOAMAANANNNNIINYIIA s -0 ¢ e .
. 2 P IR N 3 LI
TN ANINANN e -0 0o~ o .
- s m llllllllll + -~ 0K o -
pﬂ AN ANNIININIANNIIAIIIN ~ P E no Q- .
. > - - - - =06 no
ﬂU TAIIIIINIIIIINII ~DE e =0 .
p N - - o - - - - e X 1 ~e
.A VYAV IIINNANIAIN e - D ~e .
nu C e . PP Y ~e
[« ™ B R R T RS X 4 ~~ .
nw L mam W om ok wa e e e e - =DE N~
’ WWWer aLO®IpL ~o " W! . > ~
. - - bd
B R R) r°ge . aaaa- W aLe o
Dn . - .
WWwWWwWwwW s DLoRIoL N D - WWWWOO ' QLeAIaL N
.
mm "’f"'ﬁooan «ad8tL ww ﬂ CNeLmeO00O0ALOSIAL NV
.
ﬁU (S NS Y-y-7-7- 1] aJ0¢e ~no M ox A MW OO0OO0ONDOOOO0CO ' QL EINL NN
. .
MN OODDOODOOOOODD"oro.ubr L - 000000000000 0DANA0As ALEBIAL &
- .
<N 00000000000 000: ALEIEIDL N~ 000000000 ALEGIDL N
.
nv nu WWOoDOO000OOO000000 ' BLe®dp0L ~O WOoOOAOQO00O0O " Qv e o NO
.
SWhwWuWw * BLPRIDL ~@ - ° CC"l\a -
. - - ow
VOULULUU: ave ~e o - (((Iubr IO
. » o DLVLLY s s ue -
“huhOQOO s v 0 -~ m o .
. - o +avo -
R e R N Y Ty) - LehbrbunwOo0O,
. S e e e . ——— “hhube O -
TEIAINAIIIIINO s B e -0 O .
’ ® - -0+ ave -0
CO0O0DOOOOWWNIW: B¢ ~-v [®0 .
: " OCDOQOWWW: 86,0 -
—_——r oL " .
. -0 TLeswe @ -n
WWWWwWWUWRWWWYWWWWWWWWW Y 8 0 [} VMuwwWWWULWWe WD W W e O
. .
lllll ——-— @ - TXIXLXXXs ve 4 -~
. *VoeCy
VOUULULULVULCLT T VOC —-= W O~ *
. A o VOVLLUVUCYL VO C -
VOVOLOUL ™I =(C0 » a .
. -0 - o VUOUVUY s~ =CD -0
A A CCCAC VOC vy =] - - K4 ACs vOCl e
. .
UOUUUQUU I Y ~-CD o 3 .m CXTEVETIE S AR 2] L)
. . .
LUULLLUULLOOOOOO: =3 ~CP ° M <] LUk U et w000 "I =CYO -
. .
bhbbbbbbhbbbbbhbbhbhubhubhbshobbhh !) -CO ~ “ J. [S N O S O A P N o N O O O O O A A O O N N e K 4 -] ~
. .
e e - — - —m e WWWW P NI~ C D L] o IXIXIXTIITILIXwWWWWWW?) =CD ©
. .
WHhWWWWWW Y) s =C D " (o] WWW Iy ~-¢C D o
. .
VOLQUUUVrOILOC -] UsadPL O A
. .
VLUVLOVUUL s APL Y OC n | YOUUUUcaILe BC n
WWeWHWUWWWYWWWWO s GIL 0C ~ —m [REVENEVENEVYWENEWETICE I WA N 4 ~
. .
WWNWWWwWww o8 s8> 0C - Yewwoor QI 0k -
. ~ .
®Vow0O00 Arc OcC [~ cao:r ol 0C o
Y - ° - JONYLSNI 37TOAD Y o o P o " o o LONYLSHI F10AD
o n o o o O I3 © o © .
2 ~ ~ - - . AD071D Yy 2 o o o o o " ADO1D
(4 o n - ~ e - -
™ [
« «
-~ S

10000

€

1001
11001

0

1000
11000

Error propagation by clock cycle

100to0

]

Figure 1

10001

(b) For all 150 faults

r

12
activity, which in turn causes more error activity under the influence of an injected fault.

4.2. Error Propagation Versus Time Step

Figures 2a and 2b characterize the speed of error propagation within a clock cycle. Given
that a misfire will occur in a certain clock cycle (i.e., the fault does not remain latent). the proba-
bility of a misfire can be determined by reading the value of the cumulative percent column from
the appropriate plot. For example, the probability of a fault resulting in an erroneous gate value

in 10 time steps is 0.37.

These plots were generated by overlaying the 50 clock cycles in the sample and plotting the
frequency of misfires for each of the 70 time steps. Most often there was no activity beyond 30
or so time steps/clock cycle. Tests showed that there was not significant variability between one
clock cycle and another for the measured interval. The misfire activity was found to be close to a
Gamma distribution. This appears to be due to the inherent delay between a normal gate firing

and its corresponding misfirings, should it be faulted.

rStTEP

TSTES

DO NAULALN -

DRIGINAL pAGE 15
DE POOR QUALITY

tesnssnnsnse ssesceveces
teeNssrenestnssanroRRasseTINSRTERRERTR RS
T X LXEL YR TN T Y
essedvannsenceese
Srsasecsscesvansnusnss
tsesneas

tseveers

tessanye

lonnes

IEY Y]

tesnas

fonee

o0

te

1e

te

FREQ OF NON~-MISFIRING TIME STEPS

(a) For non-faulted case

SessavisseenrsasedsvirNaRTEsnTe
teweesesssrsecvssaneveantcenonee
9escccosscrsssosssesssrasreney

s3essaRssIsIes eIVt PIssITSRRTFReRTROEIRRRINRUE
100 0N er eIttt enanetstestanitaifieeeossverstostecssgssivesencasse
2000000000000 CEINTPRNEEIPPINNRIREROIITRERITES
SIS P E PPN NI RI NN TN OISt RTesDReEsRONERORRRITNITITEVITINTINSRIRIIROOTOS

Y I N R N R N NN NN R R LY
298P a1 NE NN RUR IR s Pt IraP ORI RO AT et tdtUTI RN e (s Itecdsrtivsinanencsnssonaes
PO AN I I 0T e eI IR ETEIT eI ettt ete s taesnitensser U e e s rentsesaensssseetvessvonsen
206800 I000EPNPIETEININNETIesN IR ERNBROREEREERSS

(b) For all 150 faults

FREQ OF MISFIRING TIME STEPS

Figure 2: Error propagation by time step

PLACENT

o0ooo 0000~~~ AUUVURRGAIGAYIWOOODO

cum
PERCENT
0.00
Q.00
0.00
9.40
18 80
26.32
%4.02
40 98
4?7 9
34 89
$1. 84
68 8cC
1M
81 38
8?7 03
91.3%
2 &2
83 98
| LRI
96 03
6 99
$7.9)
98 .68
99 44
99 62
29 ot
100 &0

PERZENT

OO0 ~~NMNANNNNL-IYOCIBGIOSeUDODO0DO0O

14
(44
cs
e<
[
68
4?
13
k)
48
€3
Ja
31

84
(2]
33
ce
£33
34
3

2

!

6¢
cr
al
4

4

13

cun,
SERCENT
0 00
0. 0C
0.00
< 08
o e?
6. 34
1391
2.1
28. 90
37.38
46 O
34 a3
[4
eI
Te 20
e 80
84 09
87. 34
9 68
.99
94.20
6.2
9. 87
0. 94
" 3
"0 ¢
100 00

! 14

| 5. QUANTIFICATION OF ERROR PROPAGATION

In this and the following sections, error propagation is quantified by determining useful
parameters by which to measure it in a standard manner. Having been defined, these parameters
are used to examine error propagation first for all the gates internal to the AMD 2901, and then
for the output gates (to determine the accuracy of the pin level fault model). Through measuring
error propagation for the internal gates, characteristic distributions can be developed for an "aver-

age” fault i.e., the average over all the 150 faults.

In general, two measures are necessary to quantify error propagation. Assuming there is a

fault in the circuit, the probability of an error occurring should be quantified. Further, one also

needs to know the severity of the error. This result is presented for different fault locations, and
for different instruction/micro-instruction activities. Note that the mere existence of a fault in
the system does not necessarily imply that there will be error activity, as some faults remain

undetected throughout the entire sample.

1} The following measured parameters were used to determine error propagation:

Existence of a fault in the circuit,

Non-faulted gate activity,

The number of non-faulted gate firings in a time step.
Misfire (error) activity,

No misfire activity.

The number of misfiring gates in a time step,

The severity.

“p PR O

The FM and M are binary variables while g. m and S are numeric variables.

The non-faulted gate activity was an important reference for quantifying error propagation.

Given a fault, the following measures of error propagation were defined:

(1) The first measure was the distribution of the number of time steps with at least one misfire.
The distribution is plotted as a function of non-faulted gate activity. Thus we obtain the

probability that, in a time slice. there is a misfire and non-faulted gate activity is equal to g.

- G SR N &G AR Gy TS a4 G N IR . O G & o = =

2

(3)

4)

15

This measure is denoted by
M, =Pr[G =g)and M] | Misfire.
Note that only misfiring time steps are counted above. An example distribution over all 150

faults may be found in Figure 3a.

The remaining time steps (i.e., those not counted above) contain no error activity in the
presence of a fault. The distribution of these data gives the probability that a time step has
a certain non-faulted gate activity and no concurrent error activity (i.e. no misfires). The
notation for this measure is

M, =Pr{(G =g)and M] | NoMisfire.

An example distribution may be found in Figure 3b.

From the information contained in Figures 3a and 3b, the probability of a misfire (given

there is a fault in the circuit) can be computed as follows:

M
—Ef __ =P (MandG =g).
M, +M,

An example distribution for the CPU subtest within the self-test program is shown in Fig-

ure 3¢ at the end of this section. Note that the probability of a misfire is still a function of

the non-faulted gate activity.

Finally, the severity of error activity is computed as follows:

m

S(m) = e

This severity measure is computed for each time step. The mean severity is then computed
across the whole sample, or portion thereof (e.g.. for all time steps having a certain system
activity such as the power-on instruction or a register transfer microinstruction type). An

example plot for the severity measure is shown in Figure 3d.

Having obtained the distributions for the probability of a misfire and the severity thereof,

one can clearly see the relationship between the error activity and the non-faulted gate activity.

ORIGINAL PAGE IS

16

OF, POOR QUALITY]

A1133A9s pue uonededord 10139 painsespy ¢ aandiyg

S1NeJ OCT (18 30J A11IIAIS AIYSIA] (P)

w8 IV1JSIN 20 R1lNW1AZS

Weee e o.-t Weee e o-o-. ”e

..

................................

Ananoy nep
PoIrany oy

- s1nej OST 118 103 sapuanbary sxgsiw-oN (Q)

$4113 W13 DMIWIISIN-NON 4O OFU2

setesr 0eears ecerse os0002 ol‘v- $00008 0eet1 B000L1 S00ET BOOOP

...

sITidavaaNa:s
ae.coeee

-
.
H
H
H
H
.
.
b
H
H

i"3lede . Luanzy v
sy uoN

s1nej OgT 11w 205 Lfqeqosd YS! (9)

(M4 WI451V JO Ri1110vVeONd

@cunssoncs

Auanry neg

s1ney G 19 J0J serouanboay argsipy (v)

$4348 INIL DAIVIZTIN JO DIwd

17

6. sANALYSIS: EFFECT OF FAULT PLACEMENT

An intuitive determinant of error propagation activity is the location in which the fault
occurs. For the analysis of the effect of fault placement upon error activity, two representative
logic units are selected, and these are compared with the distributions and measures for the

"overall” distribution (i.e., Figure 3).

The units selected are the ALU and the ALU control. As for the other logic units, the MUX
errors behave very similarly to those in the ALU. This behavior is not surprising, as the MUX
outputs feed directly into the ALU. The destination control unit and source control unit errors
behave quite similarly to those for the ALU control. Finally, the RAM shift, the Q shift, and the
carry-propagate units all have minimal error propagation due to their respective geographic loca~-
tions. The errors due to the RAM shift and the Q shift tend to pass into the RAM or Q register,
respectively, and are not propagated further within the time frame of the sample. Due to the
closeness of the carry-propagate faults to the output pins, there is little error propagation possible
(since there is no feedback, as is the case for the output select unit). A summary of the percen-

tiles for the measures for various logic units may be found in Table 1.

Table 1: Error Probability and Severity by Logic Unit

LOGIC UNIT PROBABILITY P(M) SEVERITY S(m)
50% | 75% | 95% ||50% | 75% | 95%
RAM shift 004 | 006 | 0.18 | 0.38 | 0.10| 005
Q shift 003 | 005 | 017 020 010 | 0.5
MUX 014 | 017 | 0.08 || 063 | 041 | 035
ALU 040 | 050 | 0.75{| 061 | 0.43 | 031
Carry-propagate 002 | 005| 0221 o0s50| 011 0.05

Output data select 0.20 0.25 0.38 0.61 0.49 0.26
Destination control 0.10 0.14 0.10 0.57 0.20 0.10
ALU control 0.65 0.68 0.85 0.69 0.57 0.46
Source control 0.50 0.51 0.41 0.69 0.53 0.43

18

Close examination of example misfire probability distributions. found in Figures 4a and 4b,
indicates that faults in the control unit are more likely to cause 2 misfire. This is a reasonable
prediction, as most will agree that the control units are extremely important to the correct opera-

tion of a processor.

Under further examination, on¢ may notice the similarity in shape between the distribution
for the ALU faults and that of the overall distribution (refer back to Figure 4¢c). This is mainly
due to the high percentage of faults injected into or near the ALU. The ALU and MUX (which
feeds directly into the ALU) account for 52.percent of the total number of faults injected. There-
fore, over half the simulation runs correspond to these two logic units. A point of interest is the
fact that the overall distribution has smaller misfire probabilities than that for the ALU faults
distribution. This difference indicates that some of the other logic units have a smaller probabil-
ity of misfiring than the ALU. One _explanation may be that the ALU is more highly utilized than
some of the other logic units. For example, the Q shift logic unit is used mostly for the multipli-

cation and division instructions, which are not highly used in the self-test program.

As for the effect of fault placement upon the severity of error propagation, again the control
units produce the highest values, as can be seen in Table 1. (Example plots are shown in Figures
4c and 4d, again for the ALU faults and ALU control faults, respectively). An explanation for
this phenomenon is that faults in the control units are much more likely to affect more than one
signal path. In the example of & fault in the ALU control unit, there are four data paths affected

as opposed to only one for a fault within the ALU itself.

In summary, it was found that the faults in the ALU tend to have the characteristics of the
“average” fault, i.e., the average for all 150 faults. Thus comparisons are made to tbis logic unit.
The RAM shift and Q shift units were found to be only 0.1 times as likely to have a misfire. and
similarly the severity is approximately the same. The carry-propagate unit was found to have

about 0.5 times the probability/severity of the ALU unit. The MUX has comparable numbers for

MEENEE 4 SAENE R $ aEEEmn SN aaam O Aesaew eme

19

1013U03 ()TV PU% TV 30 (YTATSTAY) A113243s pue (GOUJSII) A1111qeqod a1ysiy i sandryg

[01IU00 N)TTV 3Y3 Ul sI[ne] J0,] (P) ATV 243 ul s3pngy 30, (9)

(W) ZYI4SIN 20 R11NIAZS 1e]8 241481IM 40 ALLvIADS

ot L L e ss tes s B EAE e e SEene we

" L LS PRATRRR vereiveane Beveraresrtenas "
" I
”

o "®
o be]
M1 “
] (1]
1] It
I [
" st
2] 4]
n 1]
1] "
. 1"
" L34
" "
4" "
" 1
" ”"
v "
t (1]
it i

Gcancnanve

!“ emeeveonce
i

Ananzy siep
ey -voy

. PAGE IS

OE POOR QUALITY

10IIU0d [}V 943 Ut SI[nej 104 (Q) ATV 243 Ul sinej 10 (v)

(M1e FulaSIN 230 ASITIEYVEONS (wid 381isin 40 AI1T1GVOON4

ORIGIN.

.
Anansy ang
PR -ooN

20

the severity, though the probability is much less. Finally, the control units were found to have

approximately 1.5 times the probability/severity of the ALU.

21

7. ANALYSIS: BY INSTRUCTION/MICROINSTRUCTION

7.1. Instruction-based Analysis

Error propagation is also highly dependent upon the assembly level instruction under
execution. Thus, it is not only the amount of non-faulted gate activity which influences the
error propagation, but also an interaction between gate activity and the control exerted by the

instruction.

First, for the same instruction, there was variation in error activity between the four sam-
ples. However, the variation between the samples was not statistically significant for identical
instructions. Some variation, due to the different data operated on, even for the same type of
instruction, should be expected. As the control is not changed (for the same instruction) since con-
trol was found to have the most pronounced effect upon error propagation, this observation shows

the consistency of the error propagation measures used.

Comparisons are now made to see if "similar” instructions prt.)duce similar error propagation,
for example. to determine whether or not two types of load instructions cause similar error
vbehavior. For these comparisons four instructions were selected: LOAD, LDM, STO, and STM.
Referring to Figures 5a through Sd (misfire probabilities for specific instructions), one can see that
the instructions that load registers (LOAD and LDM) cause similar error behavior, as do the
instructions that store register contents to memory (STO and STM). Figure 5a shows the misfire
probability versus the non-faulted gate activity for the LDM instruction. Figures 5b, 5c, and 5d

show similar distributions for the LOAD, STM. and STO instructions.

Now that the similarities in error propagation have been noted for similar instructions,
differences between different instructions may be compared. The misfire probability distributions
for the load instructions are distinct from the overall distribution (see Figure 3¢ which is skewed

toward higher gate values).

& suopoNIISUl QLS PUB LS "AVOT AT 303 (BOUASIN) A111qeqoad a1ysiy :p-8g aan8iy
uortonaisul OLS 204 (P) uondNIISUY SEM 104 (9)
(M)d TVISSIN 4O ATETIEVEONL |Mid 3W1ASIN 30 ASTTIOVEONY
g1 pt - ”
13 ” “ ”
"3 . .
L& : e
»...>=u< nep B u““nﬂ.-l_““

pnpney won

ORIGINAL
Q& BOOR

-

4:28?52_ avoiod (a) uonanaisut AT 304 (®)

: h (w)d 29tsSiw 2O A3111OVO0¥ S8
(W14 2u14EIM JO ALITT1EYEOE

® - m s e s e~

Luanry mwg

Avanry ney -

PNy uoy
1

G G o &0 AN G G G G O Eh N D E e B am =

23

As for the severity distributions, shown in Figures Se through 5h. again there are favorable
comparisons between similar instructions. Figure Se shows the misfire severity versus the non-
faulted gate activity for the LDM instruction. Figures 5f. 5g, and 5h show similar distributions
for the LOAD, STM. and STO instructions, respectively. The major differences to be found are
the rates at which the severity decays and the "average” level of severity. The LDM and LOAD
instructions tend to maintain a higher level of severity than do the STM and STO instructions.
To explain such differences, one must examine the error activity's dependency upon system

activity measured at a lower level, i.e., the microinstruction level.

7.2. Microinstruction-based Analysis

The final level of analysis is to determine the effect the type of microinstruction has upon
error propagation. To this end. all of the microinstructions were classified according to the type
of activity contained therein, and the error probability and error severity distribution plots were
again generated. The distributions show that the probability of error activity, and the severity
thereof, increase with increased microinstruction activity. Note that error activity quantified at

the microinstruction level can be used to explain the error propagation at the assembly instruction

level because the microinstruction is the building block of the assembly instruction.

Prior to the analysis of the error activity data according to the type of microinstruction exe-
cuted, one must classify each of the microinstructions executed. The classifications defined for

this study include

Register transfer,

Memory access,

Logic computation (eg.. AND, OR, etc).
Arithmetic computation, and
Conditional/unconditional branch.

Due to parallelism within the microinstructions, these classifications are not disjoint. For exam-

ple. a single microinstruction may involve a register transfer and a conditional branch.

24

¢ s ese sens

v PAGE I3
R QUALITY.

ORIGIN
OF PQC

e

SUOIINIISUL QLS PUB ALLS ‘AVOT ‘WA'T 30 (YAAISTIY) £I113438 23St 43¢ 31031

uopdNIISUl OLS 104 (4)

(W18 JUL481IM 40 ALINIADS

L]
vrevbans

uononISUl qVOT 109 (3)

AWES VIRV 40 A1L83ART

SO NT 0L SNe e RS e
. . . .

Ananay ney
[Rt}

uondnnsut WIS 104 (8)

tw) g JY1dsin 20 ALI¥IADD

Awanry neg

uondnIsut WA 104 ()

tw)s Juldsin 4O ALINIASS

OO BN B0 S0

® v @ &« o 0" e

Ananoy neg
PRy -vagy

25

Figures 6a through 6d show that concurrent microinstruction activity implies more error
activity (given a fault). For example, in Figure 6a one sees the probability of error activity for a
register transfer microinstruction. When Figure 6a is compared with Figure 6b, which includes a
concurrent conditional branch, it is clear that the probability of a misfire is greater with the addi-
tional activity. Similarly, the severity of error propagation is greater in Figure 6d. which con-
tains the plot for the concurrent register transfer and conditional branch, than in Figure 6¢, which
contains the plot for the register transfer alone. This comparison also reinforces the above obser-

vation.

Notice also that in both Figures 6a and 6¢c there are deep rifts in the distributions. With the
additional activity for the distributions of Figures 6b and 6d, these rifts are filled in. Since the
relationship between non-faulted gate activity and error activity has already been shown for
several examples, the conclusion is drawn that register transfer type microinstructions alone do
not often have, for example, 6 non-faulted gate firings in a time step, whereas the combination of
register transfer and conditional branch microinstructions do. Thus, it is clear that more con-
current microinstructions (more system activity) will cause more error activity. The logical

explanation for this phenomenon is that concurrent microinstructions exercise the circuit more

fully than does a single microinstruction.

The error propagation for various microinstruction activities is summarized in Table 2. Note
that the microinstruction type 00000 is the “catch-all.” i.e.. it contains microinstructions that do
not fit in the other classifications. The notation for the definition of the type of microinstruction

is as follows:

bit 4 = 1, indicates a register transfer,

bit 3 = 1, indicates a memory access.

bit; = 1, indicates a logical ALU computation,

bit = 1, indicates an arithmetic ALU computation. and
bit 3 = 1, indicates a conditional branch.

26

uononIisutodiur Aq A1139A3s pue L1yiqeqoad aaygsipy 19 aandig

Uo119NIISUI0II W

gouelq [BUONIPU0I/IdJSUrI] 19181823 JO] (P) UOII9NIISU0IdIW J3)sueI] 13151831 10] (9)

(@) 8 J41201IM 40 A1INIADE

1w}s T¢TJOIN 2O ALIVIAZS

1Ot e 0L Ve e srs e BREY WP
S0 0 40 S0 0D WO D NP PR SNO LS PO PO WMECE PO KL O LE SO sl istarrr ey Greaaniiaireiingrann Bresedrintanencaarersaras
J S L R P PP PP TR

[ROTR PSRRI

Ananry nep
pnjacy-woy

. UOI1ONIISUIOIN W
[oURIqQ [BUOHIPU0/I2JSUBL} IS 10 (q)

uordnIIsuioIdiur Igjsuell uowmmwo.a I04 ﬁ&v

(W)d BWTISIN 20 ALITIEVEORd (M4 2414E1M 20 A11TIAVE0RS

sesseser

Ananzy nep
PRy -voy

ORIGINAL PAGE IS
QE POOR QUALITY

27

The relationship between concurrent microinstruction activity and error activity is
quantified in Table 2. Compare the following pairs of microinstruction types: 01000 and 01001,
10000 and 10001, and also 11000 and 11001. The first type of each pair corresponds to a
memory access, register transfer. and a concurrent register transfer/memory access, respectively.
Note that the addition of a conditional branch generally increases both the error probability and

severity. The increase in severity is most often between 10 and 20 percent.

As for the difference between the store and load instructions noticed in the previous section,
an explanation can be found in Table 2. The store instructions contain more memory access type
microinstructions than do the load instructions. Table 2 shows that the memory access type
microinstructions have lower error severity (compare 01000 vs. 10000, and 11000 vs. 10000).

This exemplifies that differences in error propagation are due to instruction type.

Table 2: Error Propagation and Severity by Microinstruction Type

MICROTYPE PROBABILITY P(M) SEVERITY S(m)
50% 75% 95% 50% 15% 95%

00000 0.15 0.17 0.21 0.52 0.48 0.44
00001 0.07 0.10 0.12 0.59 0.12 0.05
01000 0.15 0.29 0.34 0.71 0.32 0.14
01001 0.23 0.32 0.45 0.65 0.45 0.33
10000 0.20 0.30 0.34 0.70 0.39 0.29
10001 0.19 0.31 0.42 0.69 0.40 0.29
11000 0.17 0.29 0.29 0.57 0.44 0.38
11001 0.23 0.27 0.40 0.61 0.46 0.34

28

8. ERROR PROPAGATION AT THE OUTPUT PINS

Previous sections of this paper have quantified and measured error propagation throughout
the AMD 2901 bit slice processor. The error activity. measured by the probability of a misfire
and the severity thereof, has been quantified and also measured as a function of the number of
concurrent microinstructions executed. The final determination is to characterize the error

activity at the output pins and to compare the results with those obtained for the internal gates.

Interestingly enough, the results for the output pins are similar in the most part to those
obtained for the internal gates. Hence, only a few representative plots are shown. A full range of
plots is given in Appendix B. These distributions characterize the pin-level behavior correspond-

ing to specific gate level faults.

Figure 7a shows the relationship between the probability of a misfire at one of the output
pins with respect to the non-faulted output gate activity. Note that this distribution follows the
trend noticed for the internal gates. The probability of a misfire is directly correlated to the
non-faulted gate activity. Figure 7b, which shows the severity of the misfire at the output pins,
also follows the trend for the previous data. It too shows the severity of the misfire inversely

correlated to the non-faulted gate activity.

The probability of 2 misfire is much greater when the fault is located in the ALU control.
than when it is located in the ALU itself. In fact, it was found that it was nearly twice as likely
for an output misfire to occur under an ALU control fault. Similarly, the severity of the misfires
for the control faults is greater. Both of these results are similar to the within-chip results. The

same is also true for instruction/microinstruction activity.

Finally, in order to determine the appropriate fault-model for pin-level faults, we plot the
mean number of misfires for a given non-faulted pin activity (see Figure 8). For example with no
non-faulted output activity (G = 0), a single gate-level fault in the CPU can result in (on the

average) two output pin misfires in a time slice. It can be seen that most often, between two and

Noa-Faulted

Gate Activity

-]

1

H

Tes

!

1 P RE 00N ETITERNEININPPTNOTItaNI ettt NadEeettnessToenuROTeOrcRERRRTY

AN E PPN ER I r e eeOret it st Ieet IRl Intisscattenoeneniequidendsgeasesse
!
100 RS e o0 0eauesesraesestirerseeseiodnenseiecesdiontttesentsstensessasauaneorsacsesisacses

t
900000 eereas N s Ittt EaEIvenIREstesrItvcEesetscesresitsecncy

NN R IR0 EN0T eI e s PN IRIeTREINERITTTREtetnNtTRETLLIACROORIERQEOREROETRT

(a0 agss e INt e sEenstesesisuetedienslioseereEeusiitssoertanerenveteseneestaecitesnteasresssegssrsscns

]
1 S8 EP I8 0REEsEIte 10000 I0toR R ttatiri s Ieulsittesurrecorvaseecrsiaeaesstetsscsessosssnssnss

PROBADILITY OF RISFIRE P(M)

(a) For non-faulted case

Non-Faulled

Gate Activity
-] Y N R R Ny Y Yy Y NN N R R R R R rnnmnmmmmmIIImImImmmommmm T
1 :lln-tc"t"‘lct'locooclll':nulonlO'oc-'on..t'lcllln-loo
2 ;lln.l'l'Il.lllllﬁl.tl!..l'.l'ltll.l.l-ll"l.!.ll'
b1 Eo--ccan SessreeTetIINATIITNRITYSIItIAIROIRIOILIOITNIARTTS
. z-c---.--ovn-ut.vnn---vvoc.-o'----‘a--uoo-lannunt-
s :llIl'l'l.!.l!lll.ll.ll'l.!'l.lll'l.lltll!l.
[:lllllllit..llll'lllll sseaesesesrIsneNnee
? :c-o---n--..---a--ca---o-n-o-v----t.-ooo-o--
8 ;I.IllIlQlll.l'll'..ll!lIll'lllIl.!ll'l

!
B R R R R R T L T T Y

0.03% 0.1 0.139 0.20.23 ©0.3 0.3 0.4 0.4% 0.3 0.%% 0.6 0.3 0.7 0.79 ©.06 083 O 8 0 9% 1

SEVERITY OF MISFIRE S{m)

(b) For all 150 faults

Figure 7: Qutput gate misfire probability (MISPROB) and severity (RELSEVER)

29

30

five output pins can misfire in a time slice.

In summary, the above result strongly quantifies the inadequacy of a single fault model at
the pin level. Note that a single fault model is assumed at the gate level. Further, the distribu-
tions given in Appendix B, by functional unit. instruction and microinstruction, aid in developing
sound pin-level multiple fault injection strategies. Using these distributions, suitable pin-level
injections can now be performed to emulate specific fault behavior at the gate-level. Of course,
more work is necessary to fully transform the information from these distributions into valid

test strategies.

NOD'FI“‘M BAR CHAAY @F MraAnS
Gate Activity MISFPE
, MEAN
| [} Isesevssorensesrncnnascensersouse hd
; \ :-nn..-n..--n 1
2 teeseresaerennenerevesvanns 1
k] :ItI'l't'l'tt!l'u'll'vlvo'tl ----- vere &
r'] tesntrsretsernerts R R P R RN R] 2
- :.....-'--n-----n---t----o----n-o-----v-o'....'-.-..]
& EI‘ sree TIPSR ICFIRECOINQIIPQRRT Y *ereIveVITYTLRTE sSevenew teseresen (] a
? : -------------- BesesINETTIIEcn s suvssrTTasIs ey trevree seesevvasvanse L3
[] SresesIVINREITCERRITNTOIR R . sesessnanee veoessnsve tecevy sseveve X} a

...

MISFIRE MEAN

Figure 8: Mean output misfires per time step

31

9. CONCLUSIONS

This paper has presented a methodology for the measurement and analysis of error propaga-
tion. Simulations were done for the BDX-930 digital avionic mini processor, and data were col-
lected for ‘the gate misfirings by finding the differences between the non-faulted master simulation
run and the simulation run in which there was injected a single stuck-at fault. Measurements
were taken for these data, including histograms for the error activity over the 50 clock cycles
sampled, histograms for the error activity within an "average” clock cycle. distributions for the

probability of misfires, and distributions for the severity of misfires.

These measures were then examined for the effects of fault placement. type of instruction
executed, and the type of microinstruction executed. Faults placed in the control units have the
highest probability of causing a misfire, and if a misfire occurs. they have the highest severity. In

contrast, faults placed in the RAM shift or Q shift produce very little error activity.

The error propagation is also influenced by the instruction currently under execution. Simi-
larities in the measures were shown for similar instructions. i.e., for STO/STM and LOAD/LDM
instruction comparisons. Then, differences in error propagation were noted between the power-

on, store register, and load register instructions.

Finally, the influence of the type of microinstruction executed was examined. Here it was
shown that concurrent microinstruction activity caused increased error activity. Furthermore,
system error activity at the assembly instruction level was related to the differences in microin-

struction types (concurrency in its constituents).

The analysis of the output pins showed a high degree of similarity with the results obtained
for the internal gates. Importantly, it was found that a multiple fault model is necessary at the
pin level to effectively describe a single stuck-at fault model at the gate level. The necessary
fault distributions may be generated by gate-level fault simulations, for which a methodology is

presented here.

{AMDS1]

[Courtois79]

[Forman79]

[Lala83]

[McGough81]

[(McGough83a]

[McGough83b]

[McGough83c]
[Migneault85]

(SAs82]
[Wensley78]

[Shin84a]

[Shin84b]

32

REFERENCES

Advanced Micro Devices, Bipolar Microprocessor Logic and Interface Book,
Advanced Micro Devices, Sunnyvale, CA, 1981.

B. Courtois, Some Results abowt the Efficiency of Simple Mechanisms for the
Detection of Microcomputer Malfunctions, Digest, FTCS-9, The Ninth Interna-
tional Symposium on Fault Tolerant Computing, pp. 71-74, June 20-22, 1979.

P. Forman and K. Moses, SIFT: Multiprocessor Architecture for Software
Implemented Fault Tolerance Flight Control and Avionics Compuaters, Third
Digital Avionics Systems Conference, pp. 325-329, November 6-8. 1979.

J.H. Lala, "Fault Detection, Isolation, and Reconfiguration in FTMP: Methods
and Experiments.” Fifth Dig. Avionics Syst. Conf., 1983.

J.G. McGough, and F.L. Swern, Measurement of Fault Latency in a Digital
Avionic Mini Processor, NASA Contractor 3651, NASA Langley Research
Center, October, 1981.

J.G. McGough, Feasibility Study for a Generalized Gate Logic Software Simula-
tor, NASA Contractor 172159, NASA Langley Research Center, July, 1983.

J.G. McGough, and F.L. Swern, Measurement of Fault Latency in a Digital
Avionics Mini Processor Part II, NASA Contractor 3651, NASA Langley
Research Center, January 1983.

J.G. McGough. Bendix:; F.L. Swern, Bendix; and S. Bavuso, NASA/Langley,

"New Results in Fault Latency Modeling,” Eascon, 1983.

"The Diagnostic Emulation Technique in the Airlab,” Internal Report, NASA-
Langley Research Center, 1985.

SAS USER'S GUIDE: Basics, SAS Institute Inc, Cary NC, 1982.

J. Wensley et. al., "SIFT: Design and Analysis of a Fault Tolerant Computer
for Aircraft Control.” Proc. IEEE. Vol. 66 No. 10, October 1978. pp. 1240-
1254.

K.G. Shin and Y.H. Lee, "Error Detection Process - Model, Design, and its
Impact on Computer Performance,” IEEE Trans. on Computers, Vol C-33, June
1984, pp. 529-540.

K.G. Shin and Y.H. Lee, "Measnurements of Fault Latency: Methodology and
Experimental Results,” Tech. Report CRL-TR-45-84, Computing Research Lab
Univ. of Michigan, Ann Arbor, 1984.

33

APPENDIX A: USE OF THE SIMULATOR
A.1 Circuit Description

The circuit chosen for simulation is the Bendix BDX-930 digital avionic mini processor. The
BDX-930 is used in a number of flight control avionics programs, notably on the AFTI F-16 FBW
system and SIFT [McGough81]. Fault tolerance is achieved by replication of the processing units
and voting among them in software, as in SIFT [Forman79]. In this study, only the CPU of the
BDX-930 is described for simulation. The remaining portions. such as I/0 and main memory are

provided for by the VAX on which the simulator runs.

The actual BDX-930 consists of 86 microcircuits printed on one circuit board {Forman79].
The circuit description for simulation consists of 3212 devices. The processor is designed around
the AMD 2901 four bit microprocessor slice {[McGough81). The block diagram of the CPU is
given in Figure A.1. The AMD 2901 is the most complex chip in the BDX-930, and hence was
chosen for the error propagation study. The simulator description of the AMD 2901 alone con-
sists of 466 devices. There are four such chips in the BDX-930; only one was chosen for close
examination. For comparison, the chip second in complexity is the Fairchild 9407 data access
register. The circuit description of this chip consists of a mere 90 devices. It seemed that this

small number of devices may not allow sufficient possibility for error propagation.

A.2 Error Detection

Error propagation is detected by the comparison of two simulation runs. The first is the
master or non-faulted simulation, i.e., there were no faults injected. The second is with a single
stuck fault injected into a single gate. By finding the differences between the outputs of these two
simulation runs, one obtains a list of only the misfiring gates. This process is best understood by

example.

INSTRUCTION
DEST. e SOQURCE
CONT. CONT. CONT.
CONTROL
RAM SHIFT Q SHIFT
~ ~ A
Q REGISTER
RAM
[p—)
MUY
“ ~4
ALU -
L J L
y
oUTsUT SELECT

Figure A_1: Block diagram of the AMD 2901

34

35

The first step to error propagation detection is to perform a non-faulted master simulation
run. Table A.1 contains the gate firings for time slice 2061. The next step is to perform a
“faulty” run, i.e., a simulation run obtained by injecting a stuck-at fault into a single gate. The
results of a simulation for which the gate GINHCPUIC32, a gate in the ALU control logic, was

stuck-at the logic value 1, are shown in Table A.2.

Having obtained the list of gate firings in the non-faulted case and the list of gate firings in
the faulted case, we use the system utility VMSDIFFERENCES to obtain those gate firings that

are actually misfirings. An example output of this utility may be seen in Table A.3.

The differences file is a complete list of all the misfiring gates during the time period simu-
lated. Those gates listed in the left column are the gate firings missing in the faulty simulation
run. Those gates listed in the right column are the extra gate firings in the faulty run. Those

gates that appear in both columns are those that have the wrong logic value even though the gate

Table A-1: Gate Firings in Master Run

Time Step Gate Name Gate Value
2061 GAOLCPUIC32
2061 GA1LCPUIC32
2061 GBOLCPUIC32
2061 GB1LCPUIC32
2061 TSY1CPUIC32
2061 TSY3CPUIC32

[S

Table A.2: Gate Firings in Faulted Run

2061 | - GAOLCPUIC32
2061 | GA1LCPUIC32
2061 | GA2LCPUIC32
2061 | GA3LCPUIC32
2061 | GATE1CPUIC32
2061 | GBOLCPUIC32
2061 | GB1LCPUIC32
2061 | GB2LCPUIC32
2061 | GB3LCPUIC32

- O OO OO

Table A.3: Gate Misfirings, Produced by VMSDIFFERENCES Utility

36

MISSING FIRINGS EXTRA FIRINGS
Time Step | Gate Name Gate Value || Time Step | Gate Name Gate Value
2061 GAOLCPUIC32 1 2060 GWECPUIC32 0
=12061 GAOLCPUIC32
2061 GBOLCPUIC32 1 2061 GA2LCPUIC32 0
=+ 2061 GA3LCPUIC32
<1 2061 GATE1CPUIC32
=+ 2061 GBOLCPUIC32
2061 TSY1CPUIC32 1 2061 GB2LCPUIC32 0
2061 TSY3CPUIC32 1 2061 GB3LCPUIC32 1

fired in both the faulty and fault-free simulations.

Three possible types of error propagation are detailed using this event driven simulator.

Error propagation is detected when

(1) there is a gate firing in the master simulation run but not in the faulty run,

(2)
(3)

values.

there is a gate firing in the faulty run that did not fire in the master run, and

there is a gate firing in both runs for the same time slice but the gate takes on different logic

One should note that in some cases the difference file will be empty. The empty file

corresponds to the fault remaining undetected, or to the fault being a latent fault, at least for the

time period simulated. For the initial run of 150 individual faults, 78.7% produced error propa-

gation detected within the chip. and 66.7% produced errors that propagated to the output pins.

These results were obtained for the first 100 clock cycles, which correspond to approximately 1%

of the test program. For the whole self-test program, the McGough study found a 92.0% gate-

level coverage and 97.6% component-level coverage [McGough83b). Clearly, faults tend to pro-

duce errors quickly once inserted into an active system.

37

i 11un 91301 £q uoneSedoad 10113 Inding :1-g 2andyy

[031U02 7TV 941 Ul SHNRY IO (P)

(9)9 Ju143I% 40 ALINAADS

S P IE GO RO N ERPE MO E ” o eI W

D R L P T T R P PR PR 1Me e S e0e 2 BEe 118N e R KOO WOLE W

® s ™ a8 e e nae

...........

Ananoy nieg
paneg-uoy

OUTPUT PIN ERROR DISTRIBUTIONS

[013U0d TV 343 Ul sifney 04 (q)

()8 JULATIM JO ABIT10VEONd

APPENDIX B

TV 993 ut sy[nuy 104 (9)

(%13 34148im 40 2310208

e

seasens B 4

Lo

D

[T} .q-a-cnn »

[T} .u..” [4

’

vesr IU

...... o FTTTTTEN

................ MerNBerees i tareseestetsetnstettisasetesisrsasese. B
Ayapry nvp
PRRIg-BoN

[TV 343 Ul S}[nejy 304 (¥)

IM)4 TM148IN 40 K2TVIEVEOUS

.

¢ I

‘ .

* .

* ”

’ .

¢ .

. L}

’ .

., L]
" Auanav aisp
Anandy nivg

pei[asg-uoy poynsg-uoN

38

uononisut £q uonededoid x0113 Inding :g7'g 2an3ig

uodnIIsul QLS 104 (P) uoidnIIsul WIS 104 (2)

(%)S TYLISIN 20 ALICIARS w)§ Julsin 4O AliwaA2E

$2.3 40 4900 0 K 0 0 LIV U LT IS WU PS NENO SEOLES L1018 SO0
Sh o aieeiesenn DR TR T TR R PP PO by Srsecunaan Basaebenabaraaai g e

R R L TR T P T T P P Y Y P YT PR PP PP PP

2 m et

e

-

g e

2

o le . .

uondnIIsul QLS 194 () uopdNIISul LS 304 (B)

iMid .u.ﬂ—su-l 40 A3111WVO0VWS (M}d 2N1ASIN 20 AZIN1GYEOWd .

»f.:«:.c Poapway-may
Peey-aon o

39

uondnIsurordsiuwr yo 3d4A1 Aq uonededoad 10113 Inding :g'g sandiyg

-

Uo119NIISUTOINW

JIURIQ [BUONIPU0I/I9)SUrI] 19151891 J0, (P) UOIIONIISUTOIINW I3 JSURIT INSIZIT IO ()

(W}S IVIISIN 4O 211WIAZS tw)s JN1JSIN JO ALIV2ALS
1 sesee -...- wese .oo.- .-..- o

R AARNEREI A XL A AL AR LN 2 LoneeE Ml moen seae e merR s LN
. .
L] »
seeesssensesrRe RN » ¢
t '
. X .
L R e P R R I I . » e *
‘ Anansy ang
- - Py eany
? > ——
=
O
<
B 7
2
3
mMu m Uo119NIISUTOINW
T YourIq [PUOIIPUOI/IJSURI] INSIST I0] (Q)
1M} 4 INLININ 2O ARITIEVRONd comﬂos-ﬂﬂmﬂ—MOHQma Houghﬂ Ho.ﬂmmmu.u hom Aﬂv
we "e "ne e o- [LI) Q. . "ne “e ”e " . e ” e . (v} d 30LASIM 4O AlT11wVEONS
6 e ..0!.—-.:-‘-‘.n
. .
. ‘
o L]
sesesense seressansenadoe -“ . L R R R L Y R R PR “
hll‘(" Auansy nw) "
pranag-son ' [agal aas}

